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Short Note

Correcting mesh-based force calculations to conserve
both energy and momentum in molecular dynamics simulations
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The high cost of evaluating forces in molecular dynamics makes it necessary to use approximations. The
most effective approximations for nonbonded 2-body interactions, such as particle–particle particle–mesh,
particle–mesh Ewald, and multilevel summation, split the potential into a short-range part which is evaluated
directly and a long-range part which is interpolated from a mesh. This results in a force that, though still con-
servative, is not translation-invariant, resulting in drift in the linear momentum. A common remedy is to apply
a uniform correction to all forces to conserve linear momentum, but this results in a force that is not conser-
vative. Described here is a mass-weighted correction, based on the simple idea of constraining the center of
mass, which does yield a conservative force.

Consider a system of N particles with masses mi and positions ~ri ¼~riðtÞ, i ¼ 1; 2; . . . ;N , which evolve in
time t as dictated by Newton’s second law of motion
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€~ri ¼ ~F iðR; _R; tÞ; ð1Þ
where R denotes~r1,~r2, . . .,~rN . Often linear momentum
P

imi
_~ri is conserved, which is equivalent to

P
i
~F i ¼~0.

In particular, a translation-invariant potential energy function
Uð~r1 þ~d; . . . ;~rN þ~dÞ ¼ Uð~r1; . . . ;~rN Þ

yields forces ~F i ¼ �riUðRÞ that sum up to zero.

For a computer simulation the cost of evaluating forces can be very high. In particular, 2-body nonbonded
interactions require OðN 2Þ operations unless approximations are used. The most efficient approximations are
obtained with methods such as particle–particle particle–mesh [1], particle–mesh Ewald (PME) [2], and mul-
tilevel summation [3–5], which split the potential into a short-range part calculated directly and a long-range
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part interpolated from a mesh. The use of a mesh yields an approximation U aðRÞ to the long-range part of the
potential energy which is not translation-invariant. This leads not only to a violation of Newton’s third law
but causes particles to exert forces on themselves [6]! (Methods based on a hierarchical clustering of interac-
tions, such as the fast multipole method [7], do not have this problem; however, they compute forces that are
not conservative [8] and appear to be otherwise less efficient for molecular dynamics [9,4], though these studies
are based on older versions of the methods.)

Failure to conserve linear momentum is at best a nuisance, since it means that even if the center of mass is
initially at rest, it will start moving as the simulation progresses. A common remedy [2,10,11] is to subtract out
the average net force ð1=NÞ

P
k
~F a

k from each force ~F a
i . However, the resulting force is not conservative even if

the original approximate force is conservative. For a conservative force, the Jacobian matrix of ~F i with respect
to~rj must equal the transpose of the Jacobian matrix of ~F j with respect to~ri. However, such is not the case for
the adjusted force ~F a

i ðRÞ � ð1=NÞ
P

k
~F a

kðRÞ, whose Jacobian matrix with respect to position~rj is given by
o

o~rj

~F a
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1

N

X
k
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¼ �H

$
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ij þ

1

N

X
k

H
$

a
kj;
where H
$

a
ij is the ði; jÞth 3� 3 block of the Hessian of the potential energy function U a.

The negative effect of this simple force correction on conservation of energy is observed in [12, p. 30].
A system of 216 rigid SPC waters is simulated for 10 ns in a cube of side length 18.7 Å. PME is used with
a 18� 18� 18 grid, a direct sum cutoff of 8 Å, and the Verlet integrator with a 2 fs time step. The use of
the force correction produces a drift of �0.14 kcal/mol amidst fluctuations of ±0.05 kcal/mol. Without the
force correction the drift is not discernible.

A mass-weighted correction to the force is conservative, however. Assume that the initial linear momentum
is zero:
X

i

mi
_~rið0Þ ¼ 0
(which is attained by subtracting a constant velocity from each velocity). Denote the displacement of the cen-
ter of mass by
~gðRÞ ¼ 1

mtot

X
k

mkð~rk �~rkð0ÞÞ;
where mtot ¼
P

kmk, and conservation of linear momentum is equivalent to the holonomic constraint
~gðRÞ ¼ 0:
This can be combined with the equations of motion (1) by adding constraint forces
mi
€~ri ¼ ~F ið. . .Þ þ mi

mtot

~k;
where~k is a set of Lagrange multipliers and its coefficient is obtained from the Jacobian matrix of ~gðRÞ with

respect to~ri. Eliminating ~k (by twice differentiating the constraints and substituting in the equations of mo-
tion) leads to
mi
€~ri ¼ ~F ið. . .Þ � mi

mtot

X
k

~F kð. . .Þ:
A direct proof that the corrected force is conservative is obtained by defining a corrected potential energy
function
U cðRÞ ¼ U að~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ:

This is translation-invariant, and the use of a potential leads to conservative forces
~F c
i ð~r1; . . . ;~rNÞ ¼ �riU cð~r1; . . . ;~rN Þ

¼ ~F a
i ð~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ �

mi

mtot

X
k

~F a
kð~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ: ð2Þ
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The assumption of zero initial linear momentum together with conservation of linear momentum implies

~gðRðtÞÞ �~0. Practical numerical integrators also exactly conserve linear momentum, so the corrected force
simplifies to
Fig. 1.
for un
~F c
i ðRÞ ¼ ~F a

i ðRÞ �
mi

mtot

X
k

~F a
kðRÞ:
Extension of this technique to nonzero initial linear momentum is possible using Eq. (2), but the calculations
become more complicated and time consuming. If the term ~gðRÞ is omitted, then the force will not be
conservative.

To test the value of the mass-weighted correction, a system of 826 TIP3P water molecules in a cubic box of
length 29.08 Å was simulated for 10 ns. Three simulations were performed with the same (equilibrated) initial
positions and velocities: one with no force correction, one with a uniform correction, and one with a mass-
weighted correction. The simulation was performed with NAMD [13] using PME with cubic B-spline interpo-
lation from a 24� 24� 24 grid and the Verlet integrator with a time step of 2 fs. A tolerance of 10�6 was used
for the direct part of the Ewald sum, which dictates the choice of the parameter in the Ewald splitting.
A switching distance of 7 Å and a cutoff of 8 Å was used for Lennard-Jones interactions with an XPLOR
switching function (which is continuously differentiable). Rigid water constraints were solved analytically
using SETTLE [14]. Fig. 1 confirms that the force-corrected simulations conserve momentum whereas the
uncorrected simulation terminates with a speed of 0.26 Å/ps and a displacement of 1180 Å for the center of
mass. (The reason that the plot shows momentum not to be exactly conserved for the two force-corrected sim-
ulations is that NAMD, for parallel performance reasons, outputs the linear momentum before applying the
force correction.) The values plotted in this graph, and the one that follows, are block-averaged over 50-ps
intervals. Fig. 2 shows total energy as a function of time. The simulations without a force correction and with
a mass-weighted correction each experience a little energy drift. Theoretical and empirical evidence [15] indi-
cates that some drift occurs for the Verlet integrator even with a conservative force and a modest stepsize.
However, the simulation with the uniform correction experiences an energy drift that is an order of magnitude
greater. Similar results were also obtained for two other 10-ns simulations. Hence, a simulation with the
weighted correction can be run an order of magnitude longer before temperature change becomes problematic.
(The Verlet integrator is symplectic for a conservative force but merely preserves volume in phase space for a
nonconservative force.)

Implementation of a force correction on a parallel distributed-memory computer requires a reduction oper-
ation followed by a broadcast. Fortunately, the mass-weighted correction is latency tolerant – unlike the uni-
form correction. Practical integrators such as the Verlet scheme and its extension to constraints [16] and to
multiple time stepping [17,18] incorporate force evaluations as impulses and exactly integrate these impulses.
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Speed of center of mass (Å/ps) vs. time (ns) for a periodic cube of 826 TIP3P water molecules with a 2 fs time step. The solid line is
corrected forces, the dashed line for a mass-weighted correction, and the dotted line for a uniform correction to forces.
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Fig. 2. Time-averaged total energy (kcal/mol) vs. time (ns) for a periodic cube of 826 TIP3P water molecules with a 2 fs time step. The
solid line is for uncorrected forces, the dashed line for a mass-weighted correction, and the dotted line for a uniform correction to forces.
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Hence force corrections ðmi=mtotÞ~kn introduced at time t ¼ nDt change the positions by an amount

ðt � nDtÞDt~kn=mtot for t P nDt, which is the same for all particles. Moreover, this remains true as long as only
translation-invariant forces are applied. Hence the correction to positions and velocities need not be applied
until just before the next evaluation of forces that are not translation-invariant. In practice, these forces are
long-range nonbonded electrostatic forces, evaluated using the largest time step. Such a technique is imple-
mented in version 2.6 of NAMD [19].
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